Uncoupling of transfer of the presequence and unfolding of the mature domain in precursor translocation across the mitochondrial outer membrane.

نویسندگان

  • T Kanamori
  • S Nishikawa
  • M Nakai
  • I Shin
  • P G Schultz
  • T Endo
چکیده

Translocation of mitochondrial precursor proteins across the mitochondrial outer membrane is facilitated by the translocase of the outer membrane (TOM) complex. By using site-specific photocrosslinking, we have mapped interactions between TOM proteins and a mitochondrial precursor protein arrested at two distinct stages, stage A (accumulated at 0 degrees C) and stage B (accumulated at 30 degrees C), in the translocation across the outer membrane at high resolution not achieved previously. Although the stage A and stage B intermediates were assigned previously to the forms bound to the cis site and the trans site of the TOM complex, respectively, the results of crosslinking indicate that the presequence of the intermediates at both stage A and stage B is already on the trans side of the outer membrane. The mature domain is unfolded and bound to Tom40 at stage B whereas it remains folded at stage A. After dissociation from the TOM complex, translocation of the stage B intermediate, but not of the stage A intermediate, across the inner membrane was promoted by the intermembrane-space domain of Tom22. We propose a new model for protein translocation across the outer membrane, where translocation of the presequence and unfolding of the mature domain are not necessarily coupled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial protein import: Reversible binding of the presequence at the trans side of the outer membrane drives partial translocation and unfolding

The mechanism of translocation of matrix-targeted, cleavable preproteins across the mitochondrial outer membrane was studied using purified outer membrane vesicles. The N-terminal presequence interacts in a sequential and reversible fashion with two specific binding sites. The first one is provided by protease-sensitive receptors on the surface of the membrane (cis site); the second one is loca...

متن کامل

Two distinct membrane potential–dependent steps drive mitochondrial matrix protein translocation

Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, ...

متن کامل

Two distinct mechanisms drive protein translocation across the mitochondrial outer membrane in the late step of the cytochrome b(2) import pathway.

The import of cytochrome b(2) into mitochondria consists of two steps. The translocation of the first part of the presequence across the inner membrane is coupled with the translocation of the tightly folded heme-binding domain across the outer membrane and requires a membrane potential DeltaPsi and the functions of mitochondrial Hsp70 (mHsp70) in the matrix. Once the heme-binding domain has pa...

متن کامل

Presequence recognition by the tom40 channel contributes to precursor translocation into the mitochondrial matrix.

More than 70% of mitochondrial proteins utilize N-terminal presequences as targeting signals. Presequence interactions with redundant cytosolic receptor domains of the translocase of the outer mitochondrial membrane (TOM) are well established. However, after the presequence enters the protein-conducting Tom40 channel, the recognition events that occur at the trans side leading up to the engagem...

متن کامل

Protein Translocation How Hsp70 Pulls It Off

In an alternative mode, the Sec61 protein associates with a tetrameric Sec62/63p complex to form the SEC complex, a channel active in posttranslational transloca-heat shock 70 protein (Hsp70) called BiP, or Kar2p in yeast (Lyman and Schekman, 1997). BiP and the SEC complex are the only components required for translo-cation in a reconstituted system (Panzner et al., 1995); of A significant frac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 7  شماره 

صفحات  -

تاریخ انتشار 1999